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ABSTRACT: Prominent phonon hydrodynamic phenomena were
predicted in graphene at low temperatures due to the abundance of
momentum-conserving three-phonon interactions. Recent studies,
however, have shown that higher-order interactions constitute an
additional resistive channel that significantly reduces the thermal
conductivity of this material. Here, we show that the occurrence of
hydrodynamic effects in graphene is severely conditioned by four-
phonon interactions. Contrary to conventional understanding, we
first demonstrate that the collective limit assumption, in which the
phonon distribution is fully correlated, is not adequate to
understand the hydrodynamic transport mechanisms in graphene.
Then we report the key hydrodynamic parameters, namely the
nonlocal length and the heat flux relaxation time, and we show that
they are significantly reduced if considering full anharmonicity. Finally, we discuss observable implications in a variety of
experimental configurations and we critically review previous predictions on the necessary conditions for the manifestation of
collective phonon behavior and phonon hydrodynamics.
KEYWORDS: graphene, phonon hydrodynamics, four-phonon interactions, second sound, phonon viscosity

Predicting the thermal conductivity of bulk semiconductors
from first-principles became possible due to the

implementation of density functional theory,1 which informs
the full landscape of phonon interactions,2 to solve the
linearized Boltzmann Transport Equation (BTE). For simple
nonequilibrium constraints, such as a homogeneous temper-
ature gradient, the conductivity and the phonon distribution
function can be obtained by solving the BTE via iterative
methods3−5 based on the variational principle.6

In the presence of nanoscale boundaries, or nonhomoge-
neous and rapidly varying thermal fields, the phonon
distribution accommodates high-order perturbations that can
induce hydrodynamic-like heat transport behavior.7 For
example, deviations from diffusion have been observed in the
form of thermal waves8,9 and heat viscosity.10,11 In low-
dimensional materials, these effects are amplified due to the
limited phase space for phonon interactions as prescribed by
conservation laws.12−15 Momentum-conserving phonon−pho-
non (Normal) collisions redistribute phonon momentum
without relaxing the distribution back to equilibrium,16

which delays the relaxation of the heat flux and contributes
to the persistence of collective phonon evolution.17,18 In this
context, the conductivity is not the only relevant thermal
property, since other integrated phonon magnitudes such as
the nonlocal length and the flux relaxation time calibrate the
hydrodynamic response in space and time, respectively.7,19

Historically, it has been assumed that accounting for three-
phonon (3-ph) interactions is sufficient to fully characterize
the evolution of the phonon distribution and achieve
converged solutions of the BTE. Recently, however, it has
been recognized that higher-order phonon scattering processes
can play a non-negligible role.20−23 Four-phonon (4-ph)
interactions introduce an additional channel of thermal
resistance that profoundly influences the overall thermal
transport properties in specific 2D materials such as graphene,
where 3-ph scattering is restricted by a symmetry-based
selection rule.24 Including 4-ph scattering has been shown to
be crucial in converging thermal conductivity values at 300 K
via the iterative method in graphene22,25,26 and other
materials,27,28 while it has been shown to be negligible in
other cases such as transition metal dichalcogenides.29,30 Thus,
these higher-order anharmonicities play an important role in
the context of accurate thermal management and the design of
graphene-based and next-generation electronic devices, where
predictive modeling of heat flow is critical. Despite their
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significance, the quantitative effects of four-phonon collisions
on the nanoscale transport mechanisms and the hydrodynamic
transport properties mentioned above remain relatively
unexplored.
In this work, we discuss the origin of hydrodynamic

transport effects in graphene taking into consideration the
non-negligible role of 4-ph collisions, and illustrate the
interplay of complex scattering mechanisms and fundamental
conservation laws. Specifically, we provide a physical
interpretation of the iteratively converged phonon distribution
function and the associated thermal conductivity in terms of
collective and kinetic contributions. We then report the key
mesoscopic hydrodynamic parameters, namely the nonlocal
length and the heat flux relaxation time, calculated from first-
principles, and we investigate the specific role of 4-ph collisions
on the emergence of viscous heat flow and second sound in a
variety of experimental configurations. Overall, the analysis
enables revisiting the necessary and sufficient conditions for
the emergence of phonon hydrodynamics in general semi-
conductors at different temperatures, and questions previous
interpretations.
We first consider solutions of the BTE in the presence of a

constant, homogeneous temperature gradient in a system
without boundaries. In such a stationary situation, the BTE can
be expressed as

· =n C nv ( ) (1)

where C is the collision operator and nμ is the phonon
population of phonon mode μ = (k, p), with wavevector k and
polarization branch p, and group velocity vμ.
The converged solution of eq 1 considering both 3- and 4-

ph scattering processes from ab initio at 300 K is shown in
Figure 1a (see Supporting Information for the results at 100

K). The solution is represented for acoustic branches in terms
of the normalized deviation from equilibrium, and only the
projection over an in-plane direction x is represented. We
consider interatomic force constants renormalized at the
corresponding temperature. More details on the iterative
BTE solutions and methodology is provided in the Supporting
Information.
We notice that all the acoustic branches display the same

slope near the zone center, which is an apparent signature of
the displaced distribution associated with the collective regime
(or Ziman’s limit).6 This characteristic has been associated
with the emergence of hydrodynamic transport effects.12,13

However, to understand to what extent the solution in Figure
1a truly corresponds to the displaced distribution, it is
necessary to distinguish kinetic and collective contributions
quantifying the degree of independent and correlated phonon
evolution, respectively.
We seek linearized BTE solutions in terms of the partial

derivative of the equilibrium distribution nμ
0 with respect to

energy ε and a perturbation Φμ, such that

= + =n n n n
dn

d
0 0

0

(2)

First, we consider a kinetic regime, where the conservation
of momentum in phonon interactions is not frequent. In this
situation, eq 1 can be simplified using the Relaxation Time
Approximation (RTA)

· =n
n n

v R

0

(3)

where τμ
R is the resistive single-mode relaxation time. In the

presence of a thermal gradient (i.e., Φμ ∝ ∇T), we obtain

Figure 1. (A) Converged distribution function under a uniform thermal gradient considering 3- and 4-ph interactions at 300 K. (B) KCM
distribution function in the same conditions. (C) Collective contribution. (D) Kinetic contribution. (E) Interpolation parameter. (F) Thermal
conductivity at different temperatures as obtained by the iterative method and KCM, along with the collective and kinetic contributions. The
displaced distribution is indicated in (A−D) as a black dashed line.
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= ·n
T

T
dn

d
vK R

0

(4)

where ωμ is the phonon frequency. This form for nμ suggests
independent evolution of the different phonon modes and is
the typical initial ansatz for the phonon distribution in iterative
BTE solvers. However, as can be seen in Figure 1, the features
of this solution are not reproduced by the converged solution
even at 300 K.
In graphene, momentum conservation is prevalent in

phonon interactions, and hence the evolution of the different
modes is strongly correlated. In this case, the Collision
operator cannot be simplified in terms of single-mode
relaxation times, so eq 3 is not adequate. Moreover, it is
easy to demonstrate that in the limit of dominant Normal
collisions, or the collective regime, the solution of the BTE
approaches the well-known displaced distribution,6,31 which is
proportional to the conserved magnitude, i.e., the phonon
momentum k:

= ·n
T

T
dn

d
kC

0

(5)

where α is a mode-independent constant with units of
diffusivity. In contrast to the kinetic limit, the functional
form of the distribution prevents independent evolution of
each phonon mode, thus accommodating a collective response.
To determine the collective solution, the only necessary step is
the characterization of the scaling parameter α by invoking a
collective constraint governing the phonon population as a
whole. We impose balance of the total phonon momentum by
projecting the BTE (eq 1) in terms of the mode-dependent
contribution to the momentum ℏkμ. Combining the
momentum balance with eq 5 and assuming that the displaced
distribution only relaxes due to resistive scattering at a rate 1/
τμ
R, we obtain an expression for the collective diffusivity

=
·

·

d

d

k v k

k k k

dn

dT

T

dn

d

2

2
R

0

0

(6)

where we neglected nonlinear terms.
Notice that eq 5 in combination with eq 6 does not

correspond to a solution of the BTE under the RTA. This is
expected, since eq 3 is not a correct approximation for the BTE
in the collective regime. Conversely, the displaced distribution
properly accounts for the complete redistribution of phonon
momentum across all modes via abundant Normal scattering in
between any resistive scattering events.17 Mathematically, this
is reflected in the fact that the resistive scattering times are
averaged throughout the phonon population to determine the
collective perturbation in eq 5, rather than each mode being
distinctly perturbed by its respective τμ

R.
The displaced distribution Δnμ

C is represented in Figure 1 as
a black dashed line. By comparing this solution and the
converged one, we observe that the slope of the acoustic
branches, despite being equivalent, does not match the slope of
the collective solution. This indicates that the converged
solution does not correspond to the collective limit. Instead, a
significant kinetic contribution is manifested, which empha-
sizes the key role of accounting for the full landscape of
resistive scattering, including both 3- and 4-ph interactions.

To understand the significance and main physical features of
the distribution, such as the slope in the zone center, it is useful
to consider an interpolation between the kinetic and collective
limits, as proposed by the original Kinetic-Collective Model
(KCM).17,32 The usual interpolation considers a mode-
independent parameter Σ ∈ [0, 1] that quantifies the relative
importance between the momentum conserving and non-
conserving relaxation times. However, in graphene, the
dominance of momentum-conserving collisions is not
homogeneous over the whole distribution since it is weaker
away from the zone center. Therefore, here we interpolate the
two limits mode by mode

= +n n n(1 )KC K C
(7)

and

=
+

1

1
N

R (8)

with τμ
N and τμ

R being the Normal and resistive scattering times,
respectively. By construction, Σ → 1 in the collective limit and
Σ → 0 in the kinetic one. Moreover, note that the KCM
distribution, eq 7, only depends on RTA inputs.
In Figure 1, we show the KCM solution Δnμ

KC, alongside the
collective, ΣμΔnμ

C, and kinetic, (1−Σμ)Δnμ
K, contributions at

300 K (see Supporting Information for results at 100 K). First,
we observe that the KCM solution is much closer to the
converged solution than the usual initial ansatz Δnμ

K in iterative
solvers, which clearly suggests KCM as a useful method to
refine the initial ansatz and reduce the required iterations for
convergence and the associated computational cost. Further-
more, KCM provides a physical interpretation of the features
displayed by the converged solution. On one side, the
collective contribution approaches the displaced distribution
only around the zone center. For wavevectors close to the
edges of the Brillouin zone, Σμ < 1 and thus these modes do
not remain correlated with the rest of the distribution. On the
other side, the kinetic contribution of the longitudinal (LA)
and transversal (TA) modes close to the zone center is very
similar. This induces a deviation of the slope with respect to
the collective limit, without causing a discrepancy between the
slopes of these two branches. This kinetic effect explains why
different branches can display the same slope without fully
accommodating the collective limit. Nevertheless, the KCM
predicts that this behavior is only significant for the
longitudinal and transversal branches, while the converged
solution indicates that the flexural (ZA) branch also deviates
from the displaced distribution. This is unexpected, since the
lifetimes of zone-center flexural modes are small, and hence
their kinetic contribution is minor. This discrepancy might
indicate that precise characterization of resistive interactions
involving ZA modes is not possible by solely considering RTA
inputs.
The overall consistency between the convergent solution

and Δnμ
KC can also be investigated in terms of the predicted

thermal conductivities. In general, from a given distribution
function, the conductivity κ can be calculated by integrating
the total heat flux q:

= = ·T n dq v k2
(9)

The comparison of the thermal conductivities from the
converged and KCM solutions, along with the kinetic and
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collective contributions, is shown in Figure 1F at different
temperatures. Noteworthy, we observe that the kinetic
contribution on κ is small at 300 K and negligible at lower
temperatures.
Finally, this analysis emphasizes the necessity of accounting

for the entire anharmonic landscape to obtain robust
predictions for 2D materials. Due to the scattering selection
rules in graphene,24 4-ph interactions are mainly resistive and
involve ZA phonons. Neglecting this form of scattering thus
increases the resistive relaxation time τμ

R and the kinetic
deviation from equilibrium of these specific modes. However,
due to the distinct role of τμ

R in eqs 4 and (5), in the collective
regime the entire phonon population is influenced by the
slower relaxation of ZA phonons in the absence of 4-ph
scattering, which causes a pronounced global deviation from
equilibrium and a significant increase in collective diffusivity α.
Furthermore, by neglecting 4-ph scattering, τμ

N ≪ τμ
R and Σμ ≃

1 for all phonon modes but those very close to the edges of the
Brilloiun zone. These effects combine to cause a larger increase
in the amplitude of the collective contribution relative to the
kinetic one in eq 7. Therefore, the KCM predicts that the
distribution function closely resembles the displaced distribu-
tion if 4-ph scattering events are neglected (see Supporting
Information for an extended discussion). Nevertheless, the
displaced distribution is not a solution of the BTE under RTA,
which is the traditional starting point for the iterative method,
and it displays radically different characteristics than the kinetic
solution, particularly in the zone center. Consequently, the
iterative method becomes very sensitive to the discretization of
the wave-vector space, which ultimately prevents numerically
converging the main physical features of the distribution
function and the associated thermal properties in the absence
of 4-ph interactions.
Having established the role of 4-ph scattering in graphene on

shaping the distribution function and the thermal conductivity
under a homogeneous thermal gradient, we proceed to
consider more complex nonequilibrium conditions that are
prone to host fluid-like heat transport. Phonon hydrodynamics
is generally manifested in the form of memory effects (second
sound propagation), or viscous effects (nonlocal phonon
transport).17,33,34 These two mechanisms are related to the
slow relaxation of the heat flux compared to the characteristic
time or length scales of the experimental conditions,
respectively.35 The nonlocal length and the flux relaxation
time τ quantify the collective relaxation of the heat flux in
space and time as contributed by the entire phonon population

at a given temperature. The emergence of nondiffusive
behavior at this specific characteristic scale is in turn a
fundamental signature of hydrodynamic phonon response, in
contrast to multiscale descriptions based on uncorrelated and
ballistic phonon evolution.36,37 These quantities parametrize
the simplest model accommodating hydrodynamic effects in
terms of macroscopic variables such as the heat flux q and the
temperature T, which is known as the Guyer-Krumhansl
transport equation7,17

+ = + + ·
t

Tq
q

q q( )2 2
(10)

where ζ is a dimensionless coefficient associated with volume
viscosity effects. While this equation was originally predicted in
the collective limit, it has been recently recognized as a general
transport equation in the presence of resistive effects at
moderate Knudsen numbers.19,36,38 In the simplest picture, the
nonlocal term in eq 10 quantifies the apparent reduction of the
thermal conductivity due to viscous effects at the nanoscale,
and the memory term captures the wave-like or undulatory
thermal response at short time scales or under high-frequency
excitations. At length and time scales much larger than and τ,
respectively, eq 10 reduces to Fourier’s law of heat diffusion.
In Figure 2, we show the parameter values of the

hydrodynamic equation at different temperatures as calculated
from first principles. Specifically, we show the nonlocal length
, the heat flux relaxation time τ, and the volume viscosity ζ
according to the simplified expressions derived in ref 7. and
using the converged relaxation times quantified via the iterative
method including 3- and 4-ph interactions. The required
microscopic expressions are provided in the Supporting
Information. This is the simplest approach to obtain an
adequate estimate of the hydrodynamic parameters. However,
future work may examine the parameters by iterative solving
the exact expressions, also provided in ref. 7, which do not
require constructing mode-dependent relaxation times from
the converged distribution function.
For comparison purposes, in Figure 2, we also show the

parameter values using relaxation times resulting from iterative
solutions of the BTE considering only 3-ph interactions.
Interestingly, the significant effect of high-order anharmonic-
ities on the thermal conductivity is also manifested on the
hydrodynamic parameters. The reduction of the nonlocal
length, for example, can be interpreted as a faster uncorrelation
of the heat flux perturbations due to the additional 4-ph
resistive channel. This clearly indicates that the emergence of

Figure 2. Thermal conductivity, nonlocal length, heat flux relaxation time and volume viscosity coefficient as a function of temperature. We show
converged results considering 3- and 4-ph scattering rates, and the results neglecting 4-ph scattering for comparison purposes. We also show the
values obtained assuming the ideal collective limit.
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hydrodynamic effects in graphene at the nanoscale is
significantly influenced by the full anharmonic environment
beyond third-order interactions, with important implications
for direct microscopic approaches such as the Green’s
formalism40 and other direct solvers of the linearized BTE.39

In particular, precise sampling of low-frequency phonons is
crucial, since they display a dominant contribution on the
converged value of and τ whereas displaying a relatively
smaller contribution on κ.
As a reference, in Figure 2 we also show the values of the

hydrodynamic parameters using the original expressions
proposed by Guyer-Krumhansl.17 These results correspond
to an ideal approximation only valid in the Ziman’s limit, τμ

N ≪
τμ
R.15 Importantly, even though the shape of the distribution
function and the thermal conductivity have a dominant
collective contribution, we show that the microscopic
expressions derived particularly for the collective regime
underestimate the hydrodynamic properties of graphene even
at 100 K. Therefore, we conclude that the collective limit is
neither an adequate assumption to predict phonon hydro-
dynamic effects nor a necessary condition for the presence of
hydrodynamic heat transport.
The ab initio parametrization of eq 10 allows us to simulate

paradigmatic experimental configurations displaying strong
nondiffusive behavior. In Figure 3, we show the thermal
response predicted under ring-shaped,39 and grating8,41 optical
excitations along with predictions of steady-state heat flow in

nanoribbons.11 Since these particular experimental conditions
have been investigated in graphite samples, they represent an
adequate testbed to illustrate hydrodynamic phenomenology
potentially measurable in monolayer graphene. Using Finite
Elements,42 we simulate the different configurations by
combining the hydrodynamic heat transport eq 10 with the
energy balance equation, Cv∂tT = −∇·q + Q, with Cv being the
volumetric specific heat capacity, and Q the external power
density sources. In the nanoribbons, we consider slip boundary
conditions assuming fully diffusive phonon-boundary scatter-
ing.42 We use the ab initio calculated parameters reported in
Figure 2 for the different predictions.
At 300 K, the memory term has a negligible effect on the

solutions, so the deviations from diffusion emerge as a viscous
reduction of the apparent thermal conductivity (or apparent
diffusivity) depending on the optical ring size, the transient
grating period, or the nanoribbon width, respectively, as shown
in Figure 3. When the experimental length scale becomes
comparable to the nonlocal length, the heat flux Laplacian term
in eq 10 becomes significant, which reduces the amount of
energy that flows for a given thermal gradient and delays the
homogenization of the temperature profile. In this case, using
converged parameters accounting for 3- and 4-ph collisions
causes a radical deviation on the predictions using only 3-ph.
First, the conductivity/diffusivity in the macroscopic limit
(bulk) is reduced by a factor of ∼3 (cf. Figure 3B), which
explains the slower relaxation of the ring-shaped excitation at

Figure 3. Predictions of the nanoscale thermal response in different configurations considering 3-ph and 3ph+4ph interactions at 300 and 100 K.
(A,D) Thermal relaxation in response to a ring-shaped optical excitation.39 The evolution of the normalized temperature is shown in the excitation
region (pump) and in the center of the ring (probe). The radius of the ring and the duration of the heating time-window theat is indicated in each
case. (B,E) Thermal relaxation in response to grating optical excitation with grating period L. At 300 K, the apparent diffusivity as a function of the
grating period is shown. At 100 K, the time-evolution of the transient grating amplitude for L = 7.5 μm identifies second sound propagation. (C,F)
Apparent steady-state conductivity in nanoribbons as a function of the width. The insets display the heat flux transversal profile for a width of 10
and 20 μm at 300 and 100 K, respectively.
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300 K in Figure 3A. In addition, the reduction of the nonlocal
length by 4-ph scattering causes the nanoscale viscous effects
to emerge at smaller transient grating periods or nanoribbon
widths. In particular, the results neglecting 4-ph scattering
predict deviations from bulk diffusive behavior at grating
periods L < 100 μm, whereas the refined calculation predicts
that nondiffusive behavior emerges at significantly smaller
length scales, L < 20 μm. This is also reflected in the stationary
heat flux profiles established in the nanoribbons, where the role
of 4-ph scattering restricts the viscous response to a smaller
boundary layer,42 thus flattening the profile.
At 100 K, the nonlocal length predicted from ab initio

becomes much larger than the typical grating periods or ring
sizes currently achievable in experiments.8,39 In this situation,
the spatial heat flux correlations become geometrically
constrained. To model this effect, simple geometrical
expressions can be used to constrain the value of in terms
of the smallest experimental length scale.10 For transient
grating experiments with period L, we propose = L/6,
motivated by the relevant length scale in these experiments,43

and for ring-shaped excitations with radius R, we propose
= R/4. We use ab initio values for the other parameters.
Accordingly, the viscous response diminishes and the memory
effect dominates in the present transient experiments at 100 K,
which unlocks second sound propagation. In Figure 3, the
undulatory behavior of the thermal signals, such as the
observed cooling in the center of the ring, indicates that a
fraction of the thermal energy propagates as a wave.8,39

However, due to the reduction of the heat flux relaxation time
τ in the presence of 4-ph scattering (cf. Figure 2), we predict a
lessening of the undulatory behavior in both experiments,
which manifests as a reduced amplitude and velocity of the
thermal wave. This hydrodynamic attenuation is also predicted
at higher temperatures, thus limiting the experimental window
for the observation of second sound at room temperature to
extremely small grating periods or ring sizes and reducing the
fraction of thermal energy propagating as a wave relative to the
diffusive background. Nonetheless, recent TG experiments
using short wavelength optical pulses have demonstrated
grating excitations of 10s and 100s of nanometers,44,45 which is
promising for investigating wavelike deviations from thermal
diffusion at high temperatures.
In conclusion, the full phonon−phonon scattering environ-

ment, including 4-ph interactions, must be considered to
predict collective and hydrodynamic behavior in graphene at
temperatures ranging from 100 to 300 K. Here we have
interpreted the complex interplay between momentum-
conserving and resistive interactions in terms of an interpolated
BTE solution between the collective and kinetic limits, which
in turn provides a refined initial ansatz for the distribution
function in iterative BTE solvers. We have also shown that the
Guyer-Krumhansl equation compactly predicts the distinct
hydrodynamic heat transport effects at the nanoscale in terms
of intrinsic material properties that can be calculated from first-
principles considering full anharmonicity. Primarily, we have
demonstrated that the additional resistive relaxation channel
induced by 4-ph scattering not only causes a reduction of the
thermal conductivity, but also diminishes the nonlocal length
and heat flux relaxation time. This causes a significant
attenuation of the phonon hydrodynamic phenomena
emerging at the nanoscale and narrows the experimental
window for their observation.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00855.

Microscopic expressions required to calculate the
hydrodynamic thermal transport parameters, details on
the numerical iterative solver of the BTE used to
calculate converged relaxation times, and extended
discussion of the role of 4-ph scattering in graphene
along with KCM solutions neglecting 4-ph scattering
(PDF)

■ AUTHOR INFORMATION
Corresponding Author

Albert Beardo − Departament de Física, Universitat
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